Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels.
نویسندگان
چکیده
We examined the role of extracellular calcium entry, the possible involvement of axonal calcium channels, and the potential protective effect of calcium channel and calpain antagonists in axotomy-induced axonal degeneration using murine dorsal root ganglia in cell culture. We found that calcium entry is both necessary and sufficient to induce axonal degeneration after axotomy, and may be inhibited by cobalt, manganese, dihydropyridines, and bepridil. Tetrodotoxin and omega-conotoxin are ineffective in preventing axonal degeneration. The activation of calpains also appears to be necessary and sufficient for axonal degeneration to proceed, and can be blocked with membrane-permeant leupeptin analogs and the oxirane aloxistatin. Although other calcium-activated events may occur, it appears that inhibition of calpain is sufficient to preserve the axon at the light microscope level, and to prevent axonal cytoskeleton degradation as detected by immunofluorescent staining. Our results suggest that axonal degeneration after axotomy involves the following sequence of events: (1) a lag-period after axotomy prior to the onset of axonal degeneration, (2) entry of calcium into the axon through an intact axolemma via a calcium-specific ion transport mechanism, (3) activation of calcium-dependent effector molecules such as calpains, (4) degradation of the axonal cytoskeleton. The details of the second step require further elucidation, and are of particular interest because this step is a potential target for therapies directed towards peripheral neuropathies.
منابع مشابه
Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis.
OBJECTIVE The aim of this study was to investigate the role of voltage-dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. METHODS Calcium ion (Ca(2+)) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese-enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the...
متن کاملLive Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx.
UNLABELLED Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG...
متن کاملPathogenesis of axonal degeneration: parallels between Wallerian degeneration and vincristine neuropathy.
Peripheral neuropathies and Wallerian degeneration share a number of pathological features; the most prominent of which is axonal degeneration. We asked whether common pathophysiologic mechanisms are involved in these 2 disorders by directly comparing in vitro models of axonal degeneration after axotomy or exposure to the neurotoxin vincristine. Embryonic rat dorsal root ganglia (DRG) were allo...
متن کاملSpinal cord injury induces changes in electrophysiological properties and ion channel expression of reticulospinal neurons in larval lamprey.
In larval lamprey, hemitransections were performed on the right side of the rostral spinal cord to axotomize ipsilateral reticulospinal (RS) neurons. First, at short recovery times (2-3 weeks), uninjured RS neurons contralateral to hemitransections fired a smooth train of action potentials in response to sustained depolarization, whereas axotomized neurons fired a single short burst or short re...
متن کاملSimulation study of the transport properties of ions through ion channels serving as primary components of a nanobiosensor
Ion channels are naturally occurring pores through the proteins that regulate the passage of ions and thus maintain the concentration of ions inside and outside the cell. The ion channels control many physiological functions and they can show selectivity for a specific ion. Ion channels are mostly observed in nerve cells and muscle cells. The influx of ions into cells can be regulated by a gate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 10 شماره
صفحات -
تاریخ انتشار 1995